\begin{tabbing} IsIntegDom($r$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=0$r$ $\neq$ 1$r$ $\in$ $\mid$$r$$\mid$ \+ \\[0ex]\& (\=$\forall$$u$:$\mid$$r$$\mid$, $v$:$\mid$$r$$\mid$.\+ \\[0ex]($\neg$($v$ = (0$r$) $\in$ $\mid$$r$$\mid$)) $\Rightarrow$ (($u$ ($\ast$$r$) $v$) = (0$r$) $\in$ $\mid$$r$$\mid$) $\Rightarrow$ ($u$ = (0$r$) $\in$ $\mid$$r$$\mid$)) \-\- \end{tabbing}